
X Window System Network Performance

Keith Packard
Cambridge Research Laboratory, HP Labs, HP

keithp@keithp.com

James Gettys
Cambridge Research Laboratory, HP Labs, HP

Jim.Gettys@hp.com

Abstract

Performance was an important issue in the develop-
ment of X from the initial protocol design and contin-
ues to be important in modern application and extension
development. That X is network transparent allows us
to analyze the behavior of X from a perspective seldom
possible in most systems. We passively monitor network
packet flow to measure X application and server perfor-
mance. The network simulation environment, the data
capture tool and data analysis tools will be presented.
Data from this analysis are used to show the performance
impact of the Render extension, the limitations of the
LBX extension and help identify specific application and
toolkit performance problems. We believe this analysis
technique can be usefully applied to other network pro-
tocols.

1 Introduction
The X Window System [SG92] was designed to of-
fer good performance over campus area networks for
machines and applications in common use in the late
1980’s. A major part of the version 11 protocol design
was to reduce the effect of network latency and band-
width on application performance and correctness ob-
served in analysis of X10 programs. Resource ID al-
location was moved to the client applications to elim-
inate synchronous resource creation. Synchronous de-
vice grabs were added to provide correct operation of
user interfaces when the user could manipulate input de-
vices faster than the applications could respond. The
selection mechanism was added to provide a uniform
cut&paste model while delaying and optimizing the un-
derlying bulk data transfer. Experience over the last 15
years has shown that further work in this area is possible
and desirable.

There has previously never been packet level research
capturing and analyzing the actual network characteris-
tics of X applications. The best tools available have been
dumps of proxy servers showing requests and responses,
with no direct correlation with the actual packet level re-
quests/responses and timing that determine network be-

havior (or on a local machine, context switches between
the application and the X server).

One of the authors used the network visualization tool
when analyzing the design of HTTP/1.1 [NGBS

�

97].
The methodology and tools used in that analysis in-
volved passive packet level monitoring of traffic which
allowed precise real-world measurements and compar-
isons. The work described in this paper combines this
passive packet capture methodology with additional X
protocol specific analysis and visualization. Our experi-
ence with this combination of the general technique with
X specific additions was very positive and we believe
provides a powerful tool that could be used in the analy-
sis of other widely used protocols.

With measurement tools in hand, we set about char-
acterizing the performance of a significant selection of
X applications based on a range of toolkits and using
a variety of different implementation techniques. We
are specifically interested in the effects of the Render
extension’s [Pac01] approach to text, and whether the
optimizations offered by the Low Bandwidth X (LBX)
extension [FK93] [Pac94] were of any use. Specific ap-
plication performance issues were also discovered and
forwarded to the relevant open source projects.

2 Measuring X Performance
The measurements taken span a range of applications,
network characteristics and protocol compression tech-
niques.

2.1 Selecting Test Applications
An attempt was made to select applications representa-
tive of modern X usage. Reasonably current versions of
each application were selected from the Debian Linux
distribution. One advantage of the passive monitoring
technique is the ability to monitor several applications
simultaneously and measure the performance of the col-
lection as they interact on the network. This permits the
analysis of session startup sequences where many appli-
cations are competing for resources.

The following applications were measured in this ini-

tial work
� Mozilla (version 1.3); Web browser with client-side

fonts, imaging the microscape synthetic web page
developed for the HTTP/1.1 performance work

� Mozilla (version 1.3); Web browser with server-
side fonts, imaging the microscape synthetic web
page developed for the HTTP/1.1 performance
work

� Kedit (Version 1.3) simple text editor based on the
Qt toolkit

� Nautilus (Version 2.2.2) file browser based on the
GTK+ toolkit

� KDE Session (Version 3.1) full KDE session
startup.

2.1.1 Mozilla and Fonts
Because of the rapid uptake of client-side fonts in appli-
cation development, Mozilla was the only current appli-
cation available that supports both core and client-side
fonts in the same version. The current Debian Mozilla
package provides an alternate version of the key drawing
library that controls access to fonts; the only change in
the Mozilla configuration required to select which style
of fonts to use is to replace this library with the appropri-
ate version. This limits the changes as much as possible
which should make the resulting measurements an ac-
curate representation of the difference between the two
techniques.

2.1.2 KDE Session and LBX
The XFree86 4.3 releases of the LBX extension and
proxy are faulty, causing the KDE session to hang about
halfway through the startup process. Some modest at-
tempts to discover the problem did not yield any results
and so those values don’t appear in the resulting graphs.

2.2 Network Performance Characteristics
For this study, one goal was to measure the performance
impact of latency vs. bandwidth, and so a set of la-
tency and bandwidth values were used and each test
run with every pair of latency and bandwidth. The five
bandwidths used were 100Mb, 10Mb, 1Mb, 100Kb and
10Kb. The four latencies used were 0.1ms, 1ms, 10ms
and 100ms. These latencies represent the time for a
packet to traverse through the router in one direction,
and so a round trip time would be at least twice that
value.

2.3 X Protocol Encoding
The X protocol was originally designed to run effi-
ciently over the campus area networks available in the
late 1980’s, which ran at 10Mb/second. As modem per-
formance improved in the early 1990’s it became almost
feasible to run X applications over dial-up links.

LBX was an effort to improve performance over low-
speed/high-latency links. A significant amount of that
work was focused on reducing latency effects of slow
links without modifying applications. Another major
part of the work was in creating custom encodings of
X data to reduce the bandwidth required. The latency
efforts focused on problems seen when LBX was being
designed. How well those efforts carry forward to mod-
ern applications is explored in this paper.

More recently, network proxy support has been
added to the SSH [BS01] protocol enabling X con-
nections to be forwarded through a secure and option-
ally compressed connection. SSH has no X-specific re-
encoding or compression techniques, it simply uses the
Gzip [Gai93] compression technique on the datastream
when compression is enabled.

Measurements using raw X protocol as well as X run
through both of these proxies show their effectiveness in
improving performance.

3 Passive Network Analysis
In the past, ethernet data monitoring required very little
equipment; any host could trivially monitor traffic on the
wire from any other host by placing the ethernet hard-
ware in promiscuous mode. Such is not the case today;
twisted pair ethernet performance depends on switched
connections to provide a collision free link between the
two endpoints. The easiest way to monitor the network
is to capture packets on one end of the connection. While
this may consume some CPU resources, the overhead is
minimal given modern machine performance. Alterna-
tively, a “man in the middle” machine can be used to
capture packet traces between client and server. There
are also network switches which can mirror traffic from
one port to another, but a single connection cannot reli-
ably hold traffic from a full-duplex link and so packets
might be lost or packet ordering scrambled. For either
host-based technique, systems are now fast enough that
it is possible to capture all packets in most applications
without drops. We chose to capture packets on the X
client end of the network approach as the network sim-
ulator caused problems with capture at the router. The
passive capture configuration can be see in Figure 1.

3.1 Network Data Capture
To minimize the impact of disk activity on the network
monitoring process, the packet capture tool provides
minimal information about each network event that is
seen in the protocol trace. Each trace record is times-
tamped with that captured by the kernel packet logging
facility which provides kernel-level timestamping accu-
rate to well under a millisecond. The capture application
is run at nice -20 which has proven sufficient to avoid
packet loss.

Packet
Capture
Application

SSH
Proxy

LBX
Proxy

Server

X client X client X client

NIST Network Simulator

Figure 1: Network Capture Configuration

A low level trace of the raw IP packets is logged and
includes the sequence numbers, window size and packet
length. This data is used to deduce the raw network state
and determine whether the network is busy or whether
one or both ends of the connection are compute bound.

Above that, a trace of the exchanged X messages is
logged. Each message is timestamped with the packet
time containing the end of the message along with the X
sequence number and length. Requests include the re-
quest id, events and errors include the appropriate code.
If no data packets are lost in the monitoring stream, the
X protocol can be completely reconstructed by the cap-
ture application. A sample of the raw data file can be
seen in Figure 2.

The data are logged in this minimal form to disk and
the analysis is performed off-line. This raw logging
serves both to reduce computational load during capture
as well as to preserve the traces for multiple analysis
mechanisms and regression testing of the analysis pro-
grams themselves.

3.2 Simulating Network Conditions
The NISTNet package [Gro00] converts a Linux ma-
chine into a network emulator capable of simulating a
wide variety of network conditions. NIST Net is de-
signed to emulate end-to-end performance characteris-
tics imposed by various wide area network topologies,
such as restricted bandwidth, increased latency or even
packet loss.

While this package provides the ability to model in-
consistent networks, we chose to simplify the data anal-
ysis in this work by modeling networks with constant
bandwidth and latency.

For the 100Mb test, NISTNet was disabled and the
middle machine configured to act as a simple router.

4 Network Performance Analysis
With data captured to disk files, a pair of tools were used
to visualize the data and compute quantitative perfor-
mance results from them.

4.1 Application and Network States
To examine the application and network behavior with a
greater level of detail, a simple model of the operation of
the application and the X server was developed. In each
direction, the network can be in one of a few states:

� Idle. The network can accept additional data with-
out delaying the transmitter.

� Bandwidth Limited. The rate of data transmission
is essentially equal to the available bandwidth.

� Window Limited. The receiver window is full
and the transmitter awaits a response advancing the
window.

Idle periods are separated from congested periods by
noticing when acknowledgement packets immediately
elicit additional data from the transmitter. The assump-
tion is that the transmitter was blocked since the delivery
of the preceding data packet. When the transmit window
is closed, the assumption is that the receiver is blocked
for some reason, rather than the network. When running
X through a proxy, the receiver is the proxy application
which is blocked when the low speed link is congested,
so the distinction between the two congested states on
the low speed link cannot be determined by examining
packets captured from the high speed link.

In addition, the time applications spend waiting for
the X server to produce a reply is measured by checking
requests which have replies and which are delivered just
before a reply is received.

The sum of the time spent waiting for transmission
and replies is referred to as the Total Network Delay.
This is a slight overestimate as time spent waiting for
replies can also include a portion of the time spent wait-
ing for transmission space.

1049594552.000474880 1 Rep 32 1860 0 1

1049594552.000474880 1 Recv 32 20364 32 1 357552 63712
1049594552.000422224 1 Recv 0 20364 0 1 357552 63712

1049594552.000407036 1 Req 4 1860 43 0 1

1049594552.000407036 1 Send 184 357368 184 1 20364 23808
1049594552.000407031 1 Send 1448 355920 1448 1 20364 23808
1049594552.000407026 1 Send 1448 354472 1448 1 20364 23808
1049594552.000407014 1 Recv 0 20364 0 1 354472 63712

1049594552.000399459 1 Send 1448 353024 1448 1 20364 23808

Time BytesRecord TypeClient Sequence Len Has Ack

Sequence

WindowAck

Major/Minor Op (PutImage)

1049594552.000407036 1 Req 25624 1859 72 0 6406

Request Length

Opcode (GetInputFocus)

Sequence Extra Data Len

Request

Reply

Figure 2: Sample Packet Trace

4.2 Network Visualization

A raw packet trace is difficult to analyze manually; it
consists of simply a stream of numbers, and the most
important data is contained only in the differences be-
tween them. In his 1990 master thesis, Tim Shepard
describes the xplot network performance visualization
tool [She90].

We renamed this tool ‘netplot’ in our environment
because of conflicts with another application named
‘xplot’, it is otherwise unchanged from the xplot source
code.

Even the immediate glace at the resulting netplot is
useful, as seen in Figure 3. If the X server is always
faster than the client (the case over any network studied
here), an ideal application would never be latency bound
and would have a constant slope. No real application,
of course, is ideal. Any approximately horizontal region
of a plot is either the application unable to provide data
because it is busy for some other, non window system
related reason, or, the application is waiting on requests
from the X server. The user can then quickly zoom in
on these areas to determine the reasons for “less than
ideal” behavior. The slope of regions of the graph which
are network limited can be used to determine the actual
effective bandwidth.

More detail from the netplot tool can be seen by in-
specting closer detail of the time and sequence number
plot of a network as seen in Figure 4. As in the original
xplot paper, each packet is drawn as a line with hori-

zontal bars at either end. The length of the line indi-
cates the packet payload length and the horizontal posi-
tion indicates the time (in hours, minutes and seconds)
that the packet was received by the monitoring host. The
acknowledged data and available window are drawn by
connected sequences of horizontal and vertical segments
surrounding the packets themselves.

In addition to the original presentation of the raw net-
work performance, each packet is broken down into X
messages drawn with lines and arrow heads and marked
with the name of the X request, error or event. These are
shown at the time of the packet containing the end of the
message.

When operated interactively, the state of the connec-
tion is marked in the color of the lines and arrowheads.
These markings serve both to highlight areas with possi-
ble performance issues as well as to verify that the cate-
gorization algorithm is operating as expected.

4.3 Quantitative Network Performance
Analysis

A separate tool, xcapanalyse, produces quantitative data
about the performance of the connection which is sum-
marized by a small table including one row for the re-
quest stream and another for the response. An exam-
ple from the kedit test can be seen in Table 1. In this
table, there are three separate X clients running simul-
taneously; kedit launches two KDE helper applications
when run on an otherwise idle X server. The network

1500000

1000000

500000

0
 00:00:06 00:00:04 00:00:02 00:00:00

Bytes

Seconds

mozilla-xft-ssh-100k_10.log

1

Figure 3: Mozilla Trace

380000

360000

340000

03.250003.200003.150003.1000

Bytes

Seconds

mozilla-xft-ssh-100k_10.log

CreatePixmap

PutImage

GetInputFocus

PutImage

CreatePixmap
PutImage
CreatePixmap

Figure 4: Mozilla Startup Trace

ID Direction Idle Block Send Block Reply
1: request 2.901014 0.012351 0.883300

reply 2.844048 0.032043
total 2.868971 0.044394 0.883300

2: request 0.660025 0.000613 0.338392
reply 0.628917 0.000123
total 0.659902 0.000736 0.338392

3: request 0.091822 0.000844 0.043864
reply 0.055788 0.000000
total 0.091822 0.000844 0.043864

All: request 2.901802 0.011563
reply 2.843925 0.032166

Table 1: Network State Analysis for Kedit

kedit mozilla
 core

mozilla
 xft

nautilus

0

50

100

150

200

250

300

350

400

450

500

550

600

10Kb SSH

10Kb LBX

10Kb X

100Kb SSH

100Kb LBX

100Kb X

S
lo

w
do

w
n

F
ac

to
r

Figure 5: Proxy Performance Effects

state for each connection is split into two values for each
direction (Idle or Blocked). Time spent awaiting replies
is also displayed.

5 Results
Using the data captured from the test applications, some
hypotheses were prepared and tested using the tools de-
scribed above.

5.1 An LBX Postmortem
The LBX design was done with the knowledge that la-
tency was a significant problem in running X applica-
tions. A lot of effort was put into finding ways to
ameliorate latency in applications by ’short-circuiting’
requests wherever possible. However, the architecture
was circumscribed by requirements that it operate as a
proxy and that no changes in applications were permit-
ted. LBX only eliminates round trips for replies with
unchanging data, such as QueryExtension, InternAtom
and GetAtomName.

Figure 5 shows the effect of LBX and SSH on a vari-
ety of applications over a network with 100ms latency.
The values displayed represent performance relative to
a 10Mb ethernet link in terms of total network delay;
kedit experiences slightly more than 250 times as much
network delay over a 10Kb/100ms link than it does over
a 10Mb/0.1ms link. This chart demonstrates that LBX
does not perform any better in these environments than
SSH. The 100ms latency tests yielded the best LBX re-
sults of all. At lower latency values, LBX performed
worse than SSH for all applications.

LBX latency mitigation techniques are limited to
color allocation, atom management and the QueryEx-
tension request. Of these, only the atom requests see

any significant use in modern environments. QueryEx-
tension is called only once per extension. None of the
tested applications made any color allocation requests,
they compute pixel values on the client side when using
a TrueColor visual. TrueColor visuals are now used in
the vast majority of X environments, including handheld
devices.

LBX also compresses the protocol through a combi-
nation of re-encoding to reduce the raw request byte-
count and bytestream compression. The protocol-
specific compression techniques appear to be an en-
tirely wasted effort when followed by a general purpose
bytestream compressor; SSH performs only the latter
and apparently suffers no performance problem as a re-
sult.

The test applications do still use atoms, and an LBX
proxy shared by many similar applications would use-
fully cache these values on one side of the network.
However, Qt applications demonstrate how to fix this
by pre-interning atoms used within each application at
startup time.

5.2 Latency Dominates Bandwidth
Given the authors past experience while designing X and
LBX, the effect of latency was expected to dominate that
of bandwidth. Aside from image transport, X is a very
compact network protocol.

Nautilus running without a proxy (raw X) is shown in
Figure 6. The same application running through an SSH
proxy is shown in Figure 7 (the graph for LBX is essen-
tially identical). The proxy dramatically improves appli-
cation performance over low bandwidth links (10Kbps),
but is ineffective at countering the effects of increased
latency. The other tested applications produced essen-
tially identical results.

 10000 100000 1e+06 1e+07 1e+08Bandwidth (bps)
 0.1

 1
 10

 100

Latency (ms)
 0.1

 1

 10

 100

 1000

Total Delay (s)

Figure 6: X Total Delay (Nautilus)

Network bandwidth and latency both affect X appli-
cation performance. The question is how they relate.

 10000 100000 1e+06 1e+07 1e+08Bandwidth (bps)
 0.1

 1
 10

 100

Latency (ms)
 1

 10

 100

Total Delay (s)

Figure 7: SSH Total Delay (Nautilus)

Request Count
InternAtom 46
GetInputFocus 20
GetProperty 15
GetGeometry 13
QueryExtension 10
XKB UseExtension 4
GetSelectionOwner 4
TranslateCoords 3
QueryTree 3
XKB PerClientFlags 2
XI OpenDevice 2
XI ListInputDevices 2
RenderQueryPictFormats 2
ListExtensions 2
GetKeyboardControl 2
BigReqEnable 2
Total 132

Table 2: Synchronous Requests in Nautilus

For HTTP or FTP transfers, network latency has lit-
tle or no effect on performance as TCP is designed to
mitigate against latency by increasing window sizes as
needed. Interactive protocols like SNMP, POP3 or X
cannot mask latency in the same way as responses are
computed from requests.

X11 was designed to reduce the effect of latency as
seen by X10 applications in a few ways – resource al-
location was moved from the X server to the X client
which resulted in a huge improvement in application
startup performance. However, Xlib still exposes many
synchronous APIs which pause application execution to
wait for a reply. Looking at the raw request traffic from
Nautilus shows that while starting up, it waits for 132
replies as seen in Table 2. Minor changes in the applica-
tion could eliminate a significant number of these.

Compressing the X protocol with a general purpose
algorithm solves the network effects due to bandwidth
down to a 10Kb link. Application changes to reduce the
number of synchronous requests can eliminate much of
the dependency on latency.

5.3 Using Atoms
Gtk+ applications spend considerable time getting atom
values from the server, as shown above in Table 2
Nautilus makes 46 separate synchronous calls for atom
values. Qt demonstrates that by pre-caching expected
atoms, the number of synchronous requests can be dra-
matically reduced. Kedit makes 104 requests for atom
values and yet waits only 6 times.

5.4 Client-side Font Performance
The most radical recent shift in the X Window Sys-
tem has been the migration of font support from the
X server to the application. The Render extension pro-
vides only glyph storage and rendering functionality; all
font access and glyph rasterization is done by the client.
While there are many good architectural reasons for this
shift [Get02], it represents a major change in how text
operations appear on the network.

Two otherwise almost identical versions of Mozilla
were installed and configured, one using the core server-
side font APIs and the other using client-side fonts. Fig-
ure 8 shows total network delays for a range of network
latencies at a fixed 1Mb bandwidth for core fonts and
client fonts. The client-side version is consistently faster
than the core version.

 0.1

 1

 10

 100

 0.1 1 10 100

T
ot

al
 D

el
ay

 (
s)

Latency (ms)

Core Fonts
Client Fonts

Figure 8: Client vs Server Fonts (Mozilla)

The core-font version fetched 64KB of font data from
the server while the client-font version sent 62KB of
glyph data to the X server. Early estimates during Ren-
der design discussions about the glyph images sent by
client side fonts balancing the glyph metrics received
from server side fonts are borne out by this example.

More significantly for low performance networks, the
server-side font version required 40 additional round
trips to list fonts and retrieve font metrics from the server
which resulted in the savings measured above. Client
side fonts have now removed one of the largest latency
offenders, reducing total network delays by roughly 25%
during application startup.

6 Improving X Performance
While the main subject of this research was to produce
a methodology for measuring X network performance
and answering general questions about what application
and protocol features affect performance, the data col-
lected also highlight some performance issues for each
of the applications run. The results in the previous sec-
tion point to where efforts should be focused in attempts
to improve X performance.

These possible changes include:
� changes in toolkits
� extensions to the X library to hide latency
� extensions to X itself, including bandwidth conser-

vation

Reducing network delays due to latency can only be
effectively done by changing applications. Many of the
changes needed can be done inside the toolkits which
will provide benefit to many applications. Other changes
would benefit from changes in underlying libraries to
make latency hiding easier. Finally, while latency is
the largest issue in performance over slow networks, it
is interesting to consider whether bandwidth reductions
through compression could be usefully applied in higher
performance environments.

6.1 X and Toolkits
X11 was designed to support application development
based on toolkits which provide a user interface abstrac-
tion on top of the basic window system. There have been
three generations of X toolkits:

1. Initial assays in the art (primarily before X11 itself
was designed), resulted in some significant changes
in X11 itself (e.g. client side resource ID alloca-
tion).

2. “Second system syndrome” toolkits, typically
based on Xt [AS90] such as Motif have had some
performance work done on them using xscope and
similar tools, though the lack of detailed time infor-
mation failed to highlight the importance of latency
elimination.

3. New toolkits, such as Qt [Dal01], GTK+ [Har99],
and Mozilla [BKO

�

02] which operate at a higher
level of abstraction than 2, as they add sophisticated
text layout, canvases and image abstractions to ap-
plications, while hiding detailed information about

the display’s characteristics from clients. These
toolkits are only now seeing serious scrutiny.

Because toolkits now hide the underlying window
system almost completely, it should be possible to elimi-
nate almost all gratuitous latency dependencies by mod-
ifying that code.

6.2 Xlib Improvements
Xlib itself, while it has served well, has become very
long in the tooth. A redesigned, latency hiding library
such as XCB [MS01] is one solution. Other obvious ad-
ditions to Xlib can and should be implemented in short
order, for example, a call back based XGetProperties in-
terface would enable toolkits to hide much of the latency
when communicating with other clients. The Metacity
window manager found this technique valuable, and it
is planned for the GTK+ toolkit, to mitigate problems
in drag and drop as well as startup time. As this is
very common and involves Xlib internal interfaces, this
should be added to Xlib for general use.

One of the design “mistakes” of X11 exacerbated by
its very success is the extensible type system called
atoms (as in the Lisp systems from which it was de-
rived). This has been heavily used in the interclient com-
munications protocols used between applications (pri-
marily toolkits) and window managers. The InternAtom
function requires a round trip to provide agreement
among clients on a small (32 bit) handle for a string.
A modern design would almost certainly avoid round
trips entirely by using cryptographic hashes (or just us-
ing strings everywhere). Unfortunately, it is very hard to
retrofit this, as atom values are so small that collisions
on common hash functions would be common enough
to be worrisome. Toolkits and applications, however,
generally know the names of all atoms they use and this
can be (sometimes with some pain rewriting code) re-
duced to a single round trip hiding most or all of the
latency, transport, and context switch overhead. Alter-
natively, we could have an extension to return all atoms
and names in one request. Further investigation is in or-
der.

X11’s extension system is a minimalistic design, in-
tended to mitigate the major problems that occurred as
X10 was extended. Extension control is inadequate, hav-
ing no facility to request reload of extensions and lacks
any generic version mechanism. There are now about
10 extensions used by toolkits: querying for them and
instantiating them has become a significant part of the
startup time of applications, and becomes more so as
other the latencies are reduced. One round trip is re-
quired to get the protocol op-code, and typically a sec-
ond round trip to get a version number of the extension,
resulting in approximately 20 round trips. Ironically, im-
plementing an extensions extension may well prove the

best solution, both recovering the latency and provid-
ing the missing extension functionality, rather than just
batching multiple requests, the other obvious solution.

6.3 Bulk Data Compression

Bandwidth is another issue worth further study. While
latency may dominate application performance today,
that can be solved without changes to the underlying
protocol. It would be useful to investigate whether new
encoding or compression techniques should be included
in the protocol in the near future as such changes involve
both sides of the wire and take considerably longer to
deploy than changes on only one side or the other.

The compression available from SSH already demon-
strates some benefits for low bandwidth links. However,
SSH increases latency on high speed links as it adds con-
text switches and several manipulations of the data. Im-
age and glyph data are often the only significant band-
width consumers in X applications, and so they provide
an easy target for specific compression operations di-
rectly within the protocol libraries.

Figure 9 shows a KDE sending the desktop back-
ground through an SSH proxy. SSH bytestream com-
pression allows the 10Kb link to transmit 3.4MB of raw
X request data in 7.99 seconds, an effective bandwidth of
over 3Mbit/second (!). X images are usually extremely
compressible in their raw form.

But bandwidth is not only a concern when using X
over a network. Modern graphics chips are usually band-
width bound: they use all available bandwidth of the
AGP bus for transmission. And the general architectural
trend of the last 15 years has been that CPU cycles have
increased faster than bandwidth. Additionally, keeping
everything in cache has become increasingly important
for best CPU performance. Keeping the protocol com-
pact also minimizes context switches involved in data
transport between applications and the X server. All
these trends argue toward much closer conservation of
bandwidth.

There are (at least) four approaches, some of which
are particularly useful in the local case, and some in the
network case.

� careful design of protocol extensions
� additions to the X protocol to introduce protocol

specific compression tricks
� datatype dependent compression
� the use of general purpose stream compressors such

as ssh.

In the core protocol, GC’s (graphics contexts) were
used to good advantage to reduce the size of graph-
ics requests. More recently, the Render extension was
designed to avoid redundant transmission of both win-
dow and graphics state, as, arguably, the X core protocol

should have been designed originally. Not transmitting
redundant information is certainly better than having to
compress that information.

The Render extension replaces high-level geometric
objects with numerous low level filled polygons (either
triangles or trapezoids). An open question at this point
is whether the large number of these primitive objects
will have a measurable performance impact for X appli-
cations. Most X applications draw very few geometric
objects (lines, circles, polygons) of any kind, but par-
ticular applications may perform very intensive graphics
operations.

The Render trapezoid encoding is quite general and
it is likely that when tesselating shapes to trapezoids,
many of the coordinates will be repeated among mul-
tiple trapezoids. A simple addition to allow requests
to reuse recently transmitted information in following
trapezoids may reduce the amount of data transmitted
more efficiently than a general purpose compression sys-
tem could. This would reduce overall memory traffic
and will even be a significant benefit in the local case
when trapezoid rendering is accelerated in hardware.

Currently, the Render extension transmits glyphs in
an uncompressed form to the server. With most appli-
cations and at the current typical screen resolution, the
amount of data transmitted is roughly comparable with
the use of core fonts as font metrics no longer need be
transmitted. The glyphs, however, are highly compress-
ible. Additionally, as screen resolution scales up, the
size of glyphs will increase, though if compressed, the
bandwidth will scale sub-linearly with resolution. Con-
sequently, glyph compression may well be included in a
future Render extension version.

Similarly, a compressed image transport extension
would make a significant difference for many applica-
tions (such as web browsers), as most of the data is im-
ages, and often already available in compressed form
(e.g. GIF, PNG) within the client.

We will need to explore the tradeoffs between CPU
usage and compression efficiency further before decid-
ing what algorithms are most appropriate, while avoid-
ing the image processing, over-engineering and design
problems that made XIE useless in practice and one of
the most notable failures in attempted X extensions.

Gian Filippo Pinzari [Pin03] has recently pointed out
that Xlib does not zero out unused bytes in the proto-
col stream but transmits the left over bytes in the pro-
tocol buffer where the requests are formed. Doing so
properly would not increase memory traffic given write-
combining cache architectures, and may help the effi-
ciency of general purpose compressors such as SSH. Mr.
Pinzari reports significant improvements in compression
ratios.

5000000

4000000

3000000

2000000

 00:01:12 00:01:10 00:01:08 00:01:06

Bytes

Seconds

kde-xft-ssh-10k_100.log
PutImage

PutImage
PutImage

PutImage
PutImage

PutImage
PutImage

PutImage
PutImage

PutImage
PutImage

PutImage
PutImage

Figure 9: Effect of Compression on Bandwidth

7 Conclusions

Performing protocol-level performance analysis com-
bined with passive network monitoring provides a new
way to capture the effects of the network on application
performance. This new data demonstrates some of the
effects of recent changes in the X Window System en-
vironment and provides critical direction in improving
application performance over network connections.

This tool and methodology has allowed for quick un-
derstanding and quantification of performance issues.

� Client side fonts are making a significant reduction
in round trips, as expected, with real applications.
Application startup time is significantly reduced,
relative to using core fonts, in all cases, (local ma-
chine, local net, or simulated broadband network).
This has demonstrated consistent 25% reductions
in total application startup delays due to the net-
work.

� Bandwidth usage for client side fonts is about
the same as with server side fonts, as expected,
even with the glyphs uncompressed. Compressing
glyphs for transport would help greatly.

� Performance using LBX over the highest latency
links is no better than SSH. Performance over
broadband network of the protocol without com-
pression is only 25 percent worse than LBX. LBX
does not solve either the authentication and security
problems that SSH solves. We saw little evidence
of LBX ever helping. At least as implemented,
LBX looks to have been a bad idea.

� Some of the new toolkits are performing unneces-
sary round trips: we are working with the appropri-
ate projects to get them fixed.

� InternAtom is a hotspot in GTK+ based applica-
tions. Qt has already solved this problem by pre-
fetching many likely atoms at application startup.

� GetProperty and other inter-client communications
mechanisms is a minor problem and might see
some relief through asynchronous Xlib interfaces.
The Metacity window manager has already demon-
strated this technique with favorable results.

� Typically, with current applications based on cur-
rent toolkits, 10 extensions are initialized, and these
typically require at least two round trips before they
can be used. A solution akin to the GetProperties
suggestion above could work, but we feel an ex-
tension extension would be more productive since
there are other shortcomings with X11’s extension
system.

� Image transport remains the dominant consumer of
network bandwidth. Client side fonts increase the
number of images transmitted by including glyphs
in that mix.

For glyphs, further experimentation is needed
to understand exactly what compression algorithm
would be best under what circumstances, and the
relative tradeoffs of compression factor versus CPU
time overhead.

Image transport itself is a very common oper-
ation, and could enable significant memory, CPU
savings, and speed networks.

This is in part due to image sizes having grown
due to much greater depth. Most users have 32
bits/pixel in 2003, rather than the one or eight
bits/pixel during X11’s design, and usage has be-
come much more image dominated, compounding

the issue.
The most common applications have the images

already in compressed format. If X can accept the
images in original formats, then memory can be
saved in many clients, wire transmission time re-
duced, CPU time saved in transport, and applica-
tions sped up when used remotely from the display.

Focusing entirely on image transport rather than
display may allow design of such an extension to
avoid the traps that made the XIE extension worth-
less.

For some interesting applications (e.g. Mozilla), a
factor of 10 reduction in startup delays due to the net-
work may be possible on broadband links through a
combination of compression and latency amelioration
techniques.

Many of these improvements would improve perfor-
mance in the local case as well. Elimination of unneeded
round trips reduces context switches. Avoiding gratu-
itous decompression/compression stages reduces mem-
ory space and bandwidth consumption. Sharing com-
mon vertex data could reduce the amount of data sent to
the graphics card. Measuring the effect of such changes
in a systematic fashion will require data collection tech-
niques than presented here, but the same kind of data
analysis could be used.

8 Future Performance Analysis Work
The methodology and tools described in this paper are
a great aid in understanding the performance of X ap-
plications, and we believe could be very useful for other
application protocols.

One could build a set of tools generic to applications
protocols, as the methods used would work for most pro-
tocols with some generalization. The novelty presented
here of showing sequence number vs. time plots anno-
tated with information gleaned by parsing the applica-
tion protocol’s requests and responses could be turned
into a general, mostly table driven tool (though some
protocols, such as HTTP, make this more ugly than oth-
ers).

The tools we built for X are an initial foray into the
art, and could clearly be greatly further improved. In
particular netplot could easily be extended to display the
statistics of selected regions of the graph, avoiding man-
ual tallying of areas of interest when diagnosing non-
startup related performance problems. We will probably
add this capability sometime soon.

We have only explored a few applications, and while
behavior is generally similar, there are major differences
observed between toolkits.

In this paper, we have primarily looked at the startup
phase of applications. Performance issues come up else-
where. For example, drag and drop implementations

must interoperate and as of this writing also have per-
formance issues. We can capture the entire application’s
execution, but we have not studied these other perfor-
mance problems. Some work to make exploring much
larger datasets might be fruitful, and tools for starting
and stopping capture around interesting events would
also be useful.

X is generally always faster than a 100megabit/second
network in the tests we performed. Exploring behav-
ior closer to on-machine performance would be aided
by tests over a gigabit/second network; note, however,
that there is useful parallelism between client and server.
Our previous experience indicates that sometimes two
machines running X over a network end up being faster
than one; whether this would still be true for X today
awaits further experimentation.

9 Availability
The tools used to capture packet traces and analyze
them are all freely available under an MIT license in
the author’s public CVS server at http://keithp.
com/cvs.html in the ‘xcap’ and ‘netplot’ modules.
The source to this document can be found in the
’Usenix2003’ module.

References
[AS90] Paul J. Asente and Ralph R. Swick. X Win-

dow System Toolkit. Digital Press, 1990.

[BKO
�

02] David Boswell, Brian King, Ian Oeschger,
Pete Collins, and Eric Murphy. Creating
Applications with Mozilla. O’Reilly & As-
sociates, Inc., 2002.

[BS01] Daniel J. Barrett and Richard Silverman.
SSH, The Secure Shell: The Definitive
Guide. O’Reilly & Associates, Inc., 2001.

[Dal01] Matthias Kalle Dalheimer. Programming
with Qt. O’Reilly & Associates, Inc., sec-
ond edition, May 2001.

[FK93] Jim Fulton and Chris Kent Kantarjiev. An
Update on Low Bandwidth X (LBX): A
Standard For X and Serial Lines. In Pro-
ceedings of the Seventh Annual X Techni-
cal Conference, pages 251–266, Boston,
MA, January 1993. MIT X Consortium.

[Gai93] Jean-Loup Gailly. Gzip: The Data Com-
pression Program. iUniverse.com, 1.2.4
edition, 1993.

[Get02] James Gettys. The Future is Coming,
Where the X Window System Should
Go. In FREENIX Track, 2002 Usenix
Annual Technical Conference, Monterey,
CA, June 2002. USENIX.

[Gro00] NIST Internetworking Technology Group.
NISTNet network emulation package.
http://www.antd.nist.gov/
itg/nistnet/, June 2000.

[Har99] Eric Harlow. Developing Linux Applica-
tions with GTK+ and GDK. MacMillan
Publishing Company, 1999.

[MS01] Bart Massey and Jamey Sharp. XCB: An
X protocol c binding. In XFree86 Techni-
cal Conference, Oakland, CA, November
2001. USENIX.

[NGBS
�

97] Henrik Frystyk Nielsen, James Get-
tys, Anselm Baird-Smith, Eric
Prud’hommeaux, Hakon Wium Lie,
and Chris Lilley. Network performance
effects of http/1.1, css1, and png. In ACM
SIGCOMM ’97 Conference Proceedings.
Association for Computing Machinery,
September 1997.

[Pac94] Keith Packard. Design and Implementa-
tion of LBX: An Experiment Based Stan-
dard. In Proceedings of the Eighth An-
nual X Technical Conference, pages 121–
133, Boston, MA, January 1994. X Con-
sortium.

[Pac01] Keith Packard. Design and Implementa-
tion of the X Rendering Extension. In
FREENIX Track, 2001 Usenix Annual
Technical Conference, Boston, MA, June
2001. USENIX.

[Pin03] Gian Filippo Pinzari. The nx x protocol
compressor. Electronic Communication,
March 2003.

[SG92] Robert W. Scheifler and James Gettys. X
Window System. Digital Press, third edi-
tion, 1992.

[She90] Timothy J. Shepard. Tcp packet trace anal-
ysis. Master’s thesis, Massachusetts Insti-
tute of Technology, 1990. Also MIT LCS
Tech Report 494.

