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A B S T R A C T  

Most computer graphics pictures have been computed all 
at once, so that the rendering program takes care of all 
computations relating to the overlap of objects. There are 
several applications, however, where elements must be 
rendered separately, relying on eompositing techniques for 
the anti-aliased accumulation of the full image. This paper 
presents the case for four-channel pictures, demonstrating 
that a matte component can be computed similarly to the 
color channels. The paper discusses guidelines for the 
generation of elements and the arithmetic for their arbi- 
trary compositing. 
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1. I n t r o d u c t i o n  

Increasingly, we find that  a complex three dimensional 
scene cannot be fully rendered by a single program. The 
wealth of literature on rendering polygons and curved 
surfaces, handling the special cases of fractals and spheres 
and quadrics and triangles, implementing refinements for 
texture mapping and bump mapping, noting speed-ups on 
the basis of coherence or depth complexity in the scene, 
suggests that  multiple programs are necessary. 

In fact, reliance on a single program for rendering an 
entire scene is a poor strategy for minimizing the cost of 
small modeling errors. Experience has taught us to break 
down large bodies of source code into separate modules in 
order to save compilation time. An error in one routine 
forces only the recompilation of its module and the rela- 
tively quick reloading of the entire program. Similarly, 
small errors in coloration or design in one object should 
not force the "recompilation" of an entire image. 

Separating the image into elements which can be 
independently rendered saves enormous time. Each ele- 
ment has an associated matte, coverage information 
which designates the shape of the element. The eompo- 
siting of those elements makes use of the mattes to accu- 
mulate the final image. 

The compositing methodology must not induce aliasing in 
the image; soft edges of the elements must be honored in 
computing the final image. Features should be provided 
to exploit the full associativity of the compositing pro- 
cess; this affords flexibility, for example, for the accumu- 
lation of several foreground elements into an aggregate 
foreground which can be examined over different back- 
grounds. The compositor should provide facilities for 
arbitrary dissolves and fades of elements during an 
animated sequence. 

Several highly successful rendering algorithms have 
worked by reducing their environments to pieces that  can 
be combined in a 2 1/2 dimensional manner, and then 
overlaying them either front-to-back or back-to-front [3]. 
Whit ted and Weimar's graphics test-bed [6] and Crow's 
image generation environment [2] are both designed to 
deal with heterogenously rendered elements. Whit ted 
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and Weimar's  system reduces all objects to horizontal 
spans which are eomposited using a Warnock-like algo- 
rithm. In Crow's system a supervisory process decides 
the order in which to combine images created by indepen- 
dent special-purpose rendering processes. The imaging 
system of Warnock and Wyat t  [5] incorporates 1-bit 
mattes. The Hanna-Barbera cartoon animation system 
[4] incorporates soft-edge mattes, representing the opacity 
information in a less convenient manner than that  pro- 
posed here. The present paper presents guidelines for 
rendering elements and introduces the algebra for compo- 
siting. 

2. The Alpha Channel 

A separate component is needed to retain the matte 
information, the extent of coverage of an element at a 
pixel. In a full color rendering of an element, the RGB 
components retain only the color. In order to place the 
element over an arbitrary background, a mixing factor is 
required at every pixel to control the linear interpolation 
of foreground and background colors. In general, there is 
no way to encode this component as part of the color 
information. For anti-aliasing purposes, this mixing fac- 
tor needs to be of comparable resolution to the color 
channels. Let us call this an alpha channel, and let us 
treat  an alpha of 0 to indicate no coverage, 1 to mean full 
coverage, with fractions corresponding to part ial  cover- 
age. 

In an environment where the compositing of elements is 
required, we see the need for an alpha channel as an 
integral part  of all pictures. Because mattes are naturally 
computed along with the picture, a separate alpha com- 
ponent in the frame buffer is appropriate. Off-line 
storage of alpha information along with color works con- 
veniently into run-length encoding schemes because the 
alpha information tends to abide by the same runs. 

What  is the meaning of the quadruple (r,g,b,a) at a pixel? 
How do we express that  a pixel is half covered by a full 
red object? One obvious suggestion is to assign (1,0,0,.5} 
to that  pixel: the .5 indicates the coverage and the (1,0,0) 
is the color. There are a few reasons to dismiss this pro- 
posal, the most severe being that all compositing opera- 
tions will involve multiplying the 1 in the red channel by 
the .5 in the alpha channel to compute the red contribu- 
tion of this object at this pixel. The desire to avoid this 
multiplication points up a better solution, storing the 
pre-multiplied value in the color component, so that 
(.5,0,0,.5) will indicate a full red object half covering a 
pixel. 

The quadruple (r,g,b,a) indicates that  the pixel is a 
covered by the color ( r /a ,  g / a ,  b/a). A quadruple where 
the alpha component is less than a color component indi- 
cates a color outside the [0,1] interval, which is somewhat 
unusual. We will see later that  luminescent objects can be 
usefully represented in this way. For the representation 
of normal objects, an alpha of 0 at a pixel generally 
forces the color components to be 0. Thus the RGB 
channels record the true colors where alpha is 1, linearly 

darkened colors for fractional alphas along edges, and 
black where alpha is 0. Silhouette edges of RGBA ele- 
ments thus exhibit their anti-aliased nature when viewed 
on an RGB monitor. 

It is important  to distinguish between two key pixel 
representations: 

black ~- (0,0,0,1); 
clear-~ (0,0,0,0). 

The former pixel is an opaque black; the lat ter  pixel is 
transparent. 

3. R G B A  P i c t u r e s  

If we survey the variety of elements which contribute to a 
complex animation, we find many complete background 
images which have an alpha of 1 everywhere. Among 
foreground elements, we find that  the color components 
roll off in step with the alpha channel, leaving large areas 
of transparency. Mattes, colorless stencils used for con- 
trolling the compositing of other elements, have 0 in their 
RGB components. Off-line storage of RGBA pictures 
should therefore provide the natural data  compression for 
handling the RGB pixels of backgrounds, RGBA pixels of 
foregrounds, and A pixels of mattes. 

There are some objections to computing with these 
RGBA pictures. Storage of the color components pre- 
multiplied by the alpha would seem to unduly quantize 
the color resolution, especially as alpha approaches 0. 
However, because any compositing of the picture will 
require that  multiplication anyway, storage of the pro- 
duct forces only a very minor loss of precision in this 
regard. Color extraction, to compute in a different color 
space for example, becomes more difficult. We must 
recover (r/a, g/a ,  b /a ) ,  and once again, as alpha 
approaches 0, the precision falls off sharply. For our 
applications, this has yet to affect us. 

4. The Algebra of  Composit lng 

Given this standard of RGBA pictures, let us examine 
how compositing works. We shall do this by enumerating 
the complete set of binary compositing operations. For 
each of these, we shall present a formula for computing 
the contribution of each of two input pictures to the out- 
put composite at each pixel. We shall pay particular 
attention to the output pixels, to see tha t  they remain 
pre-multiplied by their alpha. 

4.1. Assumptions 
When blending pictures together, we do not have infor- 
mation about overlap of coverage information within a 
pixel; all we have is an alpha value. When we consider 
the mixing of two pictures at a pixel, we must make some 
assumption about the interplay of the two alpha values. 
In order to examine that interplay, let us first consider 
the overlap of two semi-transparent elements like haze, 
then consider the overlap of two opaque, hard-edged ele- 
ments. 
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If a A and aB represent the opaqueness of semi- 
transparent objects which fully cover the pixel, the com- 
putation is well known. Each object lets ( l - a )  of the 
background through, so that  the background shows 
through only (1-aA)(1-aB) of the pixel, aA( l -a~)  of the 
background is blocked by object A and passed by object 
B; (1-~A)a B of the background is passed by A and 
blocked by B. This leaves OlAOl B of the pixel which we 
can consider to be blocked by both. 

If ol A and a B represent subpixel areas covered by opaque 
geometric objects, the overlap of objects within the pixel 
is quite arbitrary. We know that  object A divides the 
pixel into two subpixel areas of ratio C~A:l-a A. We know 
that object B divides the pixel into two subpixel areas of 
ratio crB:l-cr13. Lacking further information, we make the 
following assumption: there is nothing special about the 
shape of the pixel; we expect that object B will divide each 
of the subpixel areas inside and outside of object A into 
the same ratio a/3: l -a  B. The result of the assumption is 
the same arithmetic as with semi-transparent objects and 
is summarized in the following table: 

description area 

A( ']B ( l -a t ) (1-aB)  
A ~ B  OtA(1-otB) 
A O B  (1-aA)a B 
Af ']B C~ Aa B 

The assumption is quite good for most mattes, though it 
can be improved if we know that  the coverage seldom 
overlaps (adjacent segments of a continuous line) or 
always overlaps (repeated application of a picture). For 
ease in presentation throughout this paper, let us make 
this assumption and consider the alpha values as 
representing subpixel coverage of opaque objects. 

4.2. Composit ing Operators 

Consider two pictures A and B. They divide each pixel 
into the 4 subpixel areas 

B A name description choices 
0 0 0 mf"]B_ 0 
0 1 A A_~B O, A 
1 0 B A A B  O, B 
1 1 AB A N B  O, A, B 

listed in this table along with the choices in each area for 
contributing to the composite. In the last area, for exam- 
ple, because both input pictures exist there, either could 
survive to the composite. Alternatively, the composite 
could be clear in that  area. 

A particular binary compositing operation can be 
identified as a quadruple indicating the input picture 
which contributes to the composite in each of the four 
subpixel areas 0, A, B, AB of the table above. With 
three choices where the pictures intersect, two where only 
one picture exists and one outside the two pictures, there 
are 3 X 2 X 2 X 1~---12 distinct compositing operations listed 

in the table below. Note that  pictures A and B are 
diagrammed as covering the pixel with triangular wedges 
whose overlap conforms to the assumption above. 

operation quadruple diagram F A FI? 

clear (0,0,0,0) 0 0 

A (0,A,0,A) 

B (O,O,B,B) 

A over B (0,A,B,A) 

B over A (0,A,B,B) 

A in B (0,0,0,A) 

B in A (0,0,0,B) 

1 0 

1 1-a A 

1-a B 1 

V 

A out B (0,A,0,0) 

B out  A (0,0,B,0) 

a B 0 

0 a A 

1-a  B 0 

0 l - a  A 

A atop B (0,0,B,A) ~ ~B 1-aA 

B atop A (0,A,0,B) ~ 1-a  B o~ A 

A xor B (0,A,B,0) ~ l - a  B 1-a A 

Useful operators include A over /5 ,  A in B, and A held  
out b y  B. A over B is the placement of foreground A in 
front of background B. A in B refers only to that  part  of 
A inside picture B. A held  o u t  b y  B, normally shor- 
tened to A o u t  B, refers only to that  part  of A outside 
picture B. For completeness, we include the less useful 
operators A atop B and A xo r  B. A a t o p  B is the union 
of A in B and B o u t  A. Thus, paper a t o p  table includes 
paper where it is on top of table, and table otherwise; area 
beyond the edge of the table is out of the picture. 
A xor Bis  the union of A out B and B o u t  A. 
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4.3. Compos i t ing  Ari thmet ic  
For each of the compositing operations, we would like to 
compute the contribution of each input picture at each 
pixel. This is quite easily solved by recognizing that  each 
input picture survives in the composite pixel only within 
its own matte. For each input picture, we are looking for 
that  fraction of its own matte which prevails in the out- 
put. By definition then, the alpha value of the composite, 
the total area of the pixel covered, can be computed by 
adding aA times its fraction F A to aB times its fraction 

The color of the composite can be computed on a com- 
ponent basis by adding the color of the picture A times 
its fraction to the color of picture B times its fraction. 
To see this, let CA, cB, and c o be some color component 
of pictures A, B and the composite, and let CA, CB, and 
C o be the true color component before pre-multiplication 
by alpha. Then we have 

C 0 ~ OLoC 0 

Now C o can be computed by averaging contributions 
made by C A and CB, so 

OIAFACA-I-OeBFBC B 
C o = o~ o. aAFA+O~BFB 

but the denominator is just  ao ,  so 

~o = " A F A C a + . B F , %  

CA C B 

: CAFA-FCBFB (1) 

Because each of the input colors is pre-multiplied by its 
alpha, and we are adding contributions from non- 
overlapping areas, the sum will be effectively pre- 
multiplied by the alpha value of the composite just  com- 
puted. The pleasant result that  the color channels are 
handled with the same computation as alpha can be 
traced back to our decision to store pre-multiplied RGBA 
quadruples. Thus the problem is reduced to finding a 
table of fractions F A and F B which indicate the extent of 
contribution of A and B, plugging these values into equa- 
tion 1 for both the color and the alpha components. 

By our assumptions above, the fractions are quickly 
determined by examining the pixel diagram included in 
the table of operations. Those fractions are listed in the 
F A and F B columns of the table. For example, in the 
A over  B case, picture A survives everywhere while pic- 
ture B survives only outside picture A, so the correspond- 
ing fractions are 1 and (1-~A). Substituting into equa- 
tion 1, we find 

c o : CAX l+cBX (1-aA). 

This is almost the well used linear interpolation of fore- 
ground F with background B 

/~ = FXc~+Bx(1 -a ) ,  

except that  our foreground is pre-multiplied by alpha. 

4.4. Unary  operators  
To assist us in dissolving and in balancing color bright- 
ness of elements contributing to a composite, it is useful 
to introduce a darken factor ¢ and a dissolve factor 6: 

d a r k e n ( A , ¢ ) = ( ¢ r  A,~gA,dPbA,Ol A) 
. dlssolve(A,6)----(6rA,6gA,6bA,6OtA) . 

Normally, 0<~,6_~1 although none of the theory requires 
it. 

As ~ varies from 1 to 0, the element will change from 
normal to complete blackness. If 4 > 1  the element will 
be brightened. As 6 goes from 1 to 0 the element will 
gradually fade from view. 

Luminescent objects, which add color information 
without obscuring the background, can be handled with 
the introduction of a opaqueness factor w, 0 < w <  1: 

opaque(A,w)----(rA, gA, bA,W°t A) • 
As w varies from 1 to 0, the element will change from 
normal coverage over the background to no obscuration. 
This scaling of the alpha channel alone will cause pixel 
quadruples where (~ is less than a color component, indi- 
cating a representation of a color outside of the normal 
range. This possibility forces us to clip the output compo- 
site to the [0,1] range. 

An w of 0 will produce quadruples (r,g,b,O) which do have 
meaning. The color channels, pre-multiplied by the origi- 
nal alpha, can be plugged into equation 1 as always. The 
alpha channel of 0 indicates that  this pixel will obscure 
nothing. In terms of our methodology for examining sub- 
pixel areas, we should understand that  using the opaque 
operator corresponds to shrinking the matte coverage 
with regard to the color coverage. 

4.5. T h e  PLUS operator  
We find it useful to include one further binary composit- 
ing operator plus .  The expression A plus B holds no 
notion of precedence in any area covered by both pic- 
tures; the components are simply added. This allows us 
to dissolve from one picture to another by specifying 

dlssolve(A,~) plus dissolve(B,l-(~). 

In terms of the binary operators above, p lu s  allows 
both pictures to survive in the subpixel area AB. The 
operator table above should be appended: 

operation diagram F A F B 

(0,A,B,AB) ~ ~  1 I 

A plus B 
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5. E x a m p l e s  

The operations on one and two pictures are presented as 
a basis for handling compositing expressions involving 
several pictures. A normal case involving three pictures 
is the compositing of a foreground picture A over a back- 
ground picture B, with regard to an independent matte 
C. The expression for this compositing operation is 

(A in C) over B. 

Using equation 1 twice, we find that the composite in this 
case is computed at each pixel by 

co = e a ~ e + e d l - ~ A ~ C ) .  

As an example of a complex compositing expression, let 
us consider a subwindow of Rob Cook's picture Road to 

Point Reyes [1]. This still frame was assembled from 
many elements according to the following rules: 

Foreground ---- FrgdGrass over  Rock over  Fence 
over  Shadow over  BkgdGrass; 

GIossyRoad ~ Puddle over  (PostRefleetion a top  
( PlantRefleetion a top  Road)); 

Hillside ~ Plant over  GlossyRoad over  Hill; 

Background -~- Rainbow plus Darkbow over  
Mountains over  Sky;, 

Pt.Reyes = Foreground over  Hillside over  Background. 

Figure 1 shows three intermediate composites and the 
final picture. 

Foreground ~ FrgdGrass over  Rock over  Fence 
over  Shadow over  BkgdGrass; Hillside ~ Plant over  GlossyRoad over  Hill; 

Background = Rainbow plus Darkbow over  
Mountains over  Sky;, 

Figure 1 

Pt.Reyes ~-- Foreground over  Hillside over  Background. 

257 



Stars 

@SIGGRAPH'84 

BFire 

! 

Planet 

FFire 

"( 
BFire ou t  Planet Composite 

Figure 2 
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A further example demonstrates the problem of corre- 
lated mattes. In Figure 2, we have a star field back- 
ground, a planet element, fiery particles behind the 
planet, and fiery particles in front of the planet. We wish 
to add the luminous fires, obscure the planet, darkened 
for proper balance, with the aggregate fire matte, and 
place that  over the star field. An expression for this eom- 
positing is 

(FFire plus  (BFire o u t  Planet)) 
over  darken(Planet,.8) o v e r  Stars. 

We must remember that  our basic assumption about the 
division of subpixel areas by geometric objects breaks 
down in the face of input pictures with correlated mattes. 
When one picture appears twice in a compositing expres- 
sion, we must take care with our computations of F A and 
F B. Those listed in the table are correct only for uneorre- 
lated pictures. 

To solve the problem of correlated mattes, we must 
extend our methodology to handle n pictures: we must 
examine all 2" subareas of the pixel, deciding which of 
the pictures survives in each area, and adding up all con- 
tributions. Multiple instances of a single picture or pic- 
tures with correlated mattes are resolved by aligning their 
pixel coverage. Example 2 can be computed by building 
a table of survivors (shown below) to accumulate the 
extent to which each input picture survives in the compo- 
site. 

FFire  BFire Planet Stars 

6. Conc lu s ion  

Survivor 

Stars 
Planet 
Planet 
BFire 
BFire 
Planet 
Planet 
FFire  
FFire  
FFire  
FFire  

FFire,BFire 
FFire,BFire 

FFire  
FFire  

We have pointed out the need for matte channels in syn- 
thetic pictures, suggesting that  frame buffer hardware 
should offer this facility. We have seen the convenience 
of the RGBA scheme for integrating the matte channel. A 
language of operators has been presented for conveying a 
full range of compositing expressions. We have discussed 
a methodology for deciding compositing questions at the 
subpixel level, deriving a simple equation for handling all 
composites of two pictures. The methodology is extended 
to multiple pictures, and the language is embellished to 
handle darkening, attenuation, and opaqueness. 

There are several problems to be resolved in related 
areas, which are open for future research. We are 
interested in methods for breaking arbitrary three dimen- 
sional scenes into elements separated in depth. Such ele- 
ments are equivalent to clusters, which have been a sub- 
ject of discussion since the earliest at tempts at hidden 
surface elimination. We are interested in applying the 
compositing notions to Z-buffer algorithms, where depth 
information is retained at each pixel. 
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8. A c k n o w l e d g m e n t •  

The use of mattes to control the compositing of pictures 
is not new. The graphics group at the New York Insti- 
tute of Technology has been using this for years. NYIT 
color maps were designed to encode both color and matte 
information; that  idea was extended in the Ampex AVA 
system for storing mattes with pictures. Credit should be 
given to Ed Catmull, Alvy Ray Smith, and Ikonas Graph- 
ics Systems for the existence of an alpha channel as an 
integral part  of a frame buffer, which has paved the way 
for the developments presented in this paper. 

The graphics group at Lucasfilm should be credited with 
providing a fine test bed for working out these ideas. 
Furthermore, certain ideas incorporated as part of this 
work have their origins as idle comments within this 
group. Thanks are also given to Rodney Stock for com- 
ments on an early draft which forced the authors to clar- 
ify the major assumptions. 
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