
Getting X Off The Hardware

Keith Packard
HP Cambridge Research Laboratory

keithp@keithp.com

Abstract

The X window system is generally imple-
mented by directly inserting hardware manip-
ulation code into the X server. Mode selection
and 2D acceleration code are often executed in
user mode and directly communicate with the
hardware. The current architecture provides
for separate 2D and 3D acceleration code, with
the 2D code executed within the X server and
the 3D code directly executed by the applica-
tion, partially in user space and partially in the
kernel. Video mode selection remains within
the X server, creating an artificial dependency
for 3D graphics on the correct operation of the
window system. This paper lays out an alterna-
tive structure for X within the Linux environ-
ment where the responsibility for acceleration
lies entirely within the existing 3D user/kernel
library, the mode selection is delegated to an
external library and the X server becomes a
simple application layered on top of both of
these. Various technical issues related to this
architecture along with a discussion of input
device handling will be discussed.

1 History

The X11[SG92] server architecture was de-
signed assuming significant operating assis-
tance for supporting input and output devices.

How that has changed over the years will in-
form the discussion of the design direction pro-
posed in this paper.

1.1 Original Architecture

One of the first 2D accelerated targets for X11
was the Digital QDSS (Dragon) board. The
Dragon included a 1024x768 frame buffer with
4 or 8 bits for each pixel. The frame buffer
was not addressable by the CPU, rather every
graphics operation was performed by the co-
processor. The Dragon board had only a sin-
gle video mode supporting the monitor sup-
plied with the machine. A primitive terminal
emulator in the kernel provided the text mode
necessary to boot the machine.

Graphics commands to the processor were
queued to a shared DMA buffer. The X server
would block in the kernel waiting for space in
the buffer when full.

Keyboard and mouse support were provided
by another shared memory queue between the
kernel and X server. Abstract event struc-
tures were constructed by the kernel from the
raw device data, timestamped and placed in
the shared queue. A file descriptor would
be signalled when new data were inserted to
awaken the X server, and the X server could
also directly examine the queue indices which
were stored in the shared segment. This low-
overhead queue polling was used by the X



server to check for new input after every X re-
quest was executed to reduce input latency.

The hardware sprite was handled in the ker-
nel; it’s movement was directly connected with
the mouse driver so that it could be moved at
interrupt time, leading to a responsive pointer
even in the face of high CPU load within the
X server and other applications. The keyboard
controller managed the transition from ASCII
console mode to key-transition X mode inter-
nally; abnormal termination of the X server
would leave the underlying console session
working normally.

1.2 The Slippery Slope

Early Sun workstations had unaccelerated
frame buffers. Like the QDSS above, they used
fixed monitors and had no need to support mul-
tiple video modes. As the hardware advanced,
they did actually gain programmable timing
hardware, but that was not configurable from
the user mode applications.

The X server simply mapped the frame buffer
into its address space and manipulated the pixel
values directly. Around 1990, Sun shipped the
cgsix frame buffer which included an acceler-
ator. Unlike the QDSS, the cgsix frame buffer
could be mapped by the CPU, and the acceler-
ator documentation was not published by Sun.
X11R4 included support for this card as a sim-
ple dumb frame buffer. As CPU access to the
frame buffer was slower than with Sun’s ear-
lier unaccelerated frame buffers, the result was
a much slower display.

By disassembling the provided SunWindows
driver, the author was able to construct an ac-
celerated X driver for X11R5 entirely in user
mode. This driver could not block waiting for
the accelerator to finish, rather it would spin,
polling the accelerator until it indicated it was
idle.

Keyboard and mouse support were provided by
the kernel as files from which events could be
read. The lack of any shared memory mech-
anism to signal available input meant that the
original driver would not notice input events
until the X server polled the kernel, something
which could take significant time. As there was
no kernel support for the pointer sprite, the X
server was responsible for updating it as well,
leading to poor mouse tracking when the CPU
was busy.

To ameliorate the poor mouse tracking, the
X server was modified to receive a signal
when input was present on the file descrip-
tors and immediately process the input. When
supported, the hardware sprite would also be
moved at this time, leading to improved track-
ing performance. Still, the fact that the X
server itself was responsible for connecting the
mouse motion to the sprite location meant that
under high CPU load, the sprite would notice-
ably lag the mouse.

Kernel support for the keyboard consisted of
a special mode setting which would transform
the keyboard from an ASCII input device to
reporting raw key transition events. Because
the kernel didn’t track what state the keyboard
was in, the X server had to carefully reset the
keyboard on exit back to ASCII mode or the
user would no longer be able to interact with
the console.

Placing the entire graphics driver in user mode
eliminated the need to write a kernel driver,
but marginalized overall system performance
by forcing the CPU to busy-wait for the graph-
ics engine.

Fixing the kernel to address these problems
was never even considered; the problems didn’t
prevent the system from functioning, they only
made it less than ideal.



1.3 The Dancing Bear

With widespread availability of commodity
386-based PC hardware, numerous vendors be-
gan shipping Unix (and Unix-like) operating
systems for them. These originally did not in-
clude the X window system. A disparate group
of users ported X to these systems without any
support from the operating system vendors.

That these users managed to get X running on
the early 386 hardware was an impressive feat.
That they had to do everything without any ker-
nel support only increased the difficulty.

Early PC graphics cards were simple frame
buffers as far as graphics operations went, but
configuring them to generate correct video tim-
ings was far from simple. Because monitors
varied greatly, each graphics card could be pro-
grammed to generate many different video tim-
ings. Incorrect timings could destroy the mon-
itor.

Keyboard support in these early 386-based
Unix systems was much like the Sun operating
system; the keyboard was essentially a serial
device and could be placed in a mode which
translated key transitions into ASCII or placed
a mode which would report the raw bytes emit-
ted from the keyboard.

The X server would read these raw bytes and
convert them to X events. Again, there was
latency here as the X server would not pro-
cess them except when polling for input across
all X clients and input devices. As with the
Sun driver, if the X server terminated with-
out switching the keyboard back to translated
mode, it would not be usable for the con-
sole. This particular problem was eventually
kludged in Linux by adding special key se-
quences to reset the keyboard to translated
mode.

Mouse support really was just a kernel serial
driver—PS/2 mice didn’t exist, and so bus and
serial mice were used. The X server itself
would open the device, configure the commu-
nication parameters and parse the stream of
bytes. As there was no hardware sprite sup-
port, the X server would also have to draw the
cursor on the screen; that operation had to be
synchronized with rendering and so would be
delayed until the server was idle.

Because the X server itself was managing
video mode configuration, an abnormal X
server termination would leave the video card
misconfigured and unusable as the console.
Similarly, the keyboard driver would be left in
untranslated mode, so the user couldn’t even
operate the computer blind to reboot.

The X server has assumed the same reliability
requirements as the operating system kernel it-
self; bugs in the X server would render the sys-
tem just as unusable as bugs in the kernel.

1.4 The Pit of Despair

With the addition of graphics acceleration to
the x86 environment, the X server extended its
user-mode operations to include manipulation
of the accelerator. As with the Sun GX driver
described above, these drivers included no ker-
nel support and were forced to busy-wait for
the hardware.

However, unlike the GX hardware, PC graph-
ics hardware would often tie down the PCI
bus while transferring data between the CPU
and the graphics card. Incorrect manipulation
of the hardware would result in the PCI bus
locking and the system not even responding
to network or disk activity. Unlike the simple
keyboard translation problem described above,
this cannot be be fixed in the operating system.

Because the graphics devices had no kernel
driver support, there was no operating system



management of their address space mappings.
If the BIOS included with the system incor-
rectly mapped the graphics device, it fell to
the X server to repair the PCI mapping spaces.
Manipulating the PCI address configuration
from a user-mode application would work only
on systems without any dynamic management
within the kernel.

If the machine included multiple graphics de-
vices controlled through the standard VGA ad-
dresses, the X server would need to manipulate
these PCI mappings on the fly to address the
active card.

The overall goal was not to build the best sys-
tem possible, but rather to make the code as
portable as possible, even in the face of obvi-
ously incorrect system architecture.

1.5 A Glimmer of Hope

The Mesa project started as a software-only
rasterizer for the OpenGL API. By providing a
freely available implementation of this widely
accepted API, people could run 3D applica-
tions on every machine, even those without
custom 3D acceleration hardware. Of course,
performance was a significant problem, espe-
cially as the 3D world moved from simple col-
ored polygons to textures and complex lighting
environments.

The Mesa developers started adding hardware
support for the few cards for which documenta-
tion was available. At first, these were whole-
screen drivers, but eventually the DRI project
was started to support multiple 3D applica-
tions integrated into the X window system. Be-
cause of the desire to support secure direct
rendering from multiple unprivileged applica-
tions, the DRI project had to include a kernel
driver. That driver could manage device map-
pings, DMA and interrupt logic and even clean

up the hardware when applications terminated
abnormally.

All 3D commands are written to command
buffers passed from the user application
through the kernel to the device; the kernel
can perform validation on the contents before
queuing them for transfer to the graphics card.
In many ways, this system is similar to the old
Dragon X server described above.

The result is a system which is stable in the
face of broken applications, and provides high
performance and low CPU overhead. However,
the DRI environment remains reliant on the X
server to manage video mode selection and ba-
sic device input.

2 Forward to the Past

Given the dramatic changes in system architec-
ture and performance characteristics since the
original user-mode X server architecture was
promulgated, it makes sense to look at how the
system should be constructed from the ground
up. Questions about where support for each
operation should live will be addressed in turn,
first starting with graphics acceleration, then
video mode selection and finally (and most
briefly) input devices.

3 Graphics Acceleration

X has always directly accessed the lowest lev-
els of the system to accelerate 2D graphics.
Even on the QDSS, it constructed the register-
level instructions within the X server itself.
With the inclusion of OpenGL[SAe99] 3D
graphics in some systems, the system requires
two separate graphics drivers, one for the X
server operating strictly in 2D mode and the



other inside the GL library for 3D operations.
Improvements to the 3D support have no effect
on 2D performance.

As a demonstration of how effectively OpenGL
can implement the existing X server graphics
operations, Peter Nilsson and David Reveman
implemented the Glitz library[NR04] which
supports the Render[Pac01] API on top of the
OpenGL API. In a few months, they managed
to provide dramatic acceleration for the Cairo
graphics library[WP03] on any hardware with
an OpenGL implementation. In contrast, the
Render implementation within the X sample
server using custom 2D drivers has never seen
significant acceleration, even three and a half
years after the extension was originally de-
signed. Only a few drivers include even half-
hearted attempts at acceleration.

The goal here is to have the X server use the
OpenGL API for all graphics operations. Elim-
inating the custom 2D acceleration code will
reduce the development burden. Using accel-
erated OpenGL drivers will provide dramatic
performance improvements for important oper-
ations now ill-supported in existing X drivers.
Work in this area will depend on the availabil-
ity of stand-alone OpenGL drivers that work in
the absence of an underlying window system.
Fortunately, the Mesa project is busy develop-
ing the necessary infrastructure. Meanwhile,
development can progress apace using the ex-
isting window-system dependent implementa-
tions, with the result that another X server is
run just to configure the graphics hardware and
set up the GL environment.

For cards without complete OpenGL acceler-
ation, the desired goal is to provide DRI-like
kernel functionality to support DMA and in-
terrupts to enable efficient implementation of
whatever useful operations the card does sup-
port. For 2D graphics, the operations need-
ing acceleration are those limited by memory

bandwidth—large area fills and copies. In par-
ticular acceleration of image composition re-
sults in dramatic performance improvements
with minimal amounts of code. The spectacu-
lar amounts of code written in the past that pro-
vide modest acceleration for corner cases in the
X protocol should be removed and those cases
left to software to minimize driver implemen-
tation effort.

This architecture has been implemented
by Eric Anholt in his kdrive-based Xati
server[Anh04]. Using the existing DRI driver
for the Radeon graphics card, he developed
a 2D X driver with reasonable acceleration
for common operations, including significant
portions of the X render API. The driver uses
only a small fraction of the Radeon DRI driver,
a significantly smaller kernel driver would
suffice for a ground-up implementation.

In summary, graphics cards should be sup-
ported in one of two ways:

1. With an OpenGL-based X server

2. With a 2D-only X server based on a sim-
ple loadable driver API.

3.1 Implications for Applications

None of the architectural decisions about the
internal X server architecture change the na-
ture of the existing X and Render APIs as the
fundamental 2D interface for applications. Ap-
plications using the existing APIs will simply
find them more efficient when the X server
provides a better implementation for them.
This means that applications needn’t migrate
to non-X APIs to gain access to reasonable ac-
celeration.

However, applications that wish to use
OpenGL should find a wider range of sup-
ported hardware as driver writers are given



the choice of writing either an OpenGL or 2D
driver, and aren’t faced with the necessity of
starting with a 2D driver just to support X.

In any case, use of the cairo graphics library
provides insulation from this decision as it sup-
ports X and GL requiring only modest changes
in initialization to select between them.

4 Video Mode Configuration

The area of video mode selection involves
many different projects and interests; one sig-
nificant goal of this discussion is to identify
which areas are relevant to X and how those
can be separated from the larger project.

4.1 Overview of the Problem

Back in 1984 when X was designed, graphics
devices were fundamentally fixed in their rela-
tionship with the attached monitor. The hard-
ware would be carefully designed to emit video
timings compatible with the included monitor;
there was no provision for adjusting video tim-
ings to adapt to different monitors, each video
card had a single monitor connector.

Fast forward to 2004 when common video
cards have two or more monitor connectors
along with outputs for standard NTSC, SE-
CAM or PAL video formats. The desire to
dynamically adjust the display environment to
accommodate different use modes is well sup-
ported within the Apple OS X and Microsoft
Windows environments, but the X window sys-
tem has remained largely stuck with its 1984
legacy.

4.2 X Attempts to Fix Things

X servers for PC operating systems adapted to
simple video mode selection by creating a ’vir-

tual’ desktop at least as large as the largest de-
sired mode and making the current mode view
a subset of that, panning the display around to
keep the mouse on the screen. For users able to
accept this metaphor, this provided usable, if
less than ideal support. Most of the time, how-
ever, having content off of the screen which
could only be reached by moving the mouse
was confusing. To help address this, the X Re-
size and Rotate extension (RandR)[GP01] was
designed to notify applications of changes in
the pixel size of the screen and allow program-
matic selection among available video modes.

The RandR extension solved the simple single
monitor case well enough, even permitting the
set of available modes to change on the fly as
monitors were switched. However, it failed to
address the wider problem of supporting mul-
tiple different video outputs and the dynamic
manipulation of content between them.

Statically, the X server can address each video
output correctly and even select between a
large display spanning a collection of out-
puts or separate displays on each video screen.
However, there is no capability to adjust these
configurations dynamically, nor even to auto-
matically adapt to detected changes in the en-
vironment.

4.3 X is Only Part of the Universe

With 2D performance no longer a signifi-
cant marketing tool, graphics hardware ven-
dors have been focusing instead on differenti-
ating their products based on video output (and
input) capabilities. This has dramatically ex-
tended the options available to the user, and in-
creased the support necessary within the oper-
ating system.

As the suite of possible video configuration op-
tions continues to expand, it seems impossi-
ble to construct a fixed, standard X extension



capable of addressing all present and future
needs. Therefore, a fully capable mechanism
must provide some “back door” through which
display drivers and user agents can communi-
cate information about the video environment
which is not directly relevant to the window
system or applications running within it.

One other problem with the current environ-
ment is that video mode selection is not a re-
quirement unique to the X window system.
Numerous other graphical systems exist which
are all dependent on this code. Currently, that
is implemented separately for each video card
supported by each system. The MxN combina-
tion of graphics systems and video cards means
that only a few systems have support for a wide
range of video cards. Support for systems aside
from X is pretty sparse.

4.4 Who’s in Charge Here, Anyway?

X itself places relatively modest demands on
the system. The X server needs to be aware
of what video cards are available, what video
modes are available for each card and how to
select the current mode. Within that mode
there may be a wealth of information that is
not relevant to the X server; it really only
needs to know the pixel dimensions of each
frame buffer, the physical dimension of pixels
on each monitor and the geometric relationship
among monitors. Details about which video
port are in use, or how the various ports relate
to the frame buffer are not important. Infor-
mation about video input mechanisms are even
less relevant.

As the X server need have no way of inter-
preting the complexity of the video mode en-
vironment, it should have no role in managing
it. Rather, an external system should assume
complete control and let the X server interact
in its own simple way.

This external system could be implemented
partially in the kernel and partially in user-
mode. Doing this would allow the kernel to
share the same logic for video mode selection
during boot time for systems which don’t auto-
matically configure the video card suitably on
power-on. In addition, alternate graphics sys-
tems would be able to share the same API for
their own video mode configuration.

5 Input Device Support

In days of yore, the X environment supported
exactly one kind of mouse and one (perhaps of
an internationalized family) keyboard. Sadly,
this is no longer the case. The wealth of avail-
able input devices has caused no small trouble
in X configuration and management. Add to
that the relative failure of the X Input extension
to gain widespread acceptance in applications
and the current environment is relegated to em-
ulating that available in 1984.

5.1 Uniform Device Access

The first problem to attack is that of the cur-
rent hodgepodge device support where the X
server itself is responsible for parsing the raw
bytestreams coming from the disparate input
devices. Fortunately, the kernel has already
solved that problem—the new /dev/input based
drivers provide a uniform description of de-
vices and standard interface to all. Converting
the X server over to those interfaces is straight-
forward.

However, the /dev/input/mice interface has a
significant advantage in todays world; it unifies
all mouse devices into a single stream so that
the X server doesn’t have to deal with devices
that come and go. So, to switch input mecha-
nisms, the X server must first learn to deal with
that.



5.2 Hotplug and HAL

Mice (and even keyboards) can be easily at-
tached and detached from the machine. With
USB, the system is even automatically notified
about the coming and going of devices. What
is missing here is a way of getting that noti-
fication delivered to the X server, having the
X server connect to the new device (when ap-
propriate), notifying X applications about the
availability of the new device and integrating
the devices events into the core pointer or key-
board event stream.

The Hardware Abstraction Layer (HAL)[Zeu]
project is designed to act as an intermediary
between the Linux Hotplug system and appli-
cations interested in following the state of de-
vices connected to the machine. By interposing
this mechanism, the complexity of discover-
ing and selecting input devices for the X server
can be moved into a separate system, leaving
the X server with only the code necessary to
read events from the devices specified by the
HAL. One open question is whether this should
be done by a direct connection between the X
server and the HAL daemon or whether an X
client could listen to HAL and transmit device
state changes through the X protocol to the X
server.

One additional change needed is to extend the
X Input Extension to include notification of
new and departed devices. That extension al-
ready permits the list of available devices to
change over time, all that it lacks is the mech-
anism to notify applications when that occurs.
Inside the X server implementation, the exten-
sion is in for some significantly more chal-
lenging changes as the current codebase as-
sumes that the set of available devices is fixed
at server initialization time.

6 Migrating Devices

When X was developed, each display consisted
of a single keyboard and mouse along with
a fixed set of monitors. That collection was
used for a single login session, and the in-
put devices never moved. All of that has now
changed; input devices come and go, comput-
ers get plugged into video projectors, multi-
ple users login to the same display. The dy-
namic nature of the modern environment re-
quires some changes to the X protocol in the
form of new or modified extensions.

6.1 Whose Mouse Is This?

Input devices are generally located in physical
proximity to the related output device. In a sys-
tem with multiple output devices and multiple
input devices, there is no existing mechanism
to identify which device is where. Perhaps
some future hardware advance will include ge-
ographic information along with the bus topol-
ogy.

The best we can probably do for now is to
provide a mechanism to encode in the HAL
database the logical grouping of input and out-
put devices. That way the X server would re-
ceive from the HAL the set of devices to use at
startup time and then accept ongoing changes
in that as the system was reconfigured.

One problem with this simplistic approach is
that it doesn’t permit the migration of input
devices from one grouping to another; one
can easily imagine the user holding a wireless
pointing device to attempt to interact with the
"wrong" display. Some mechanism for dynam-
ically reconfiguring the association database
will need to be included.



6.2 Hotplugging Video Hardware

While most systems have no ability to add or
remove graphics cards, it’s not unheard of—
many handheld computers support CF video
adapters. On the other hand, nearly all systems
do support “hotplugging” of the actual display
device or devices. Many can even detect the
presence or absence of a monitor enabling true
auto-detection and automatic reconfiguration.

When a new monitor is connected, the X server
needs to adapt its configuration to include it. In
the case where the set of physical screens are
gathered together as a single logical screen, the
change can be reflected by resizing that single
screen as supported by the RandR extension.
However, if each physical screen is exposed to
applications as a separate logical screen, then
the X server must somehow adapt to the pres-
ence of a new screen and report that informa-
tion to applications. This will require an exten-
sion.

In terms of the existing X server implemen-
tation, the changes are rather more dramatic.
Again, it has some deep-seated assumptions
that the set of hardware under its control will
not change after startup. Fixing these will keep
developers entertained for some time.

6.3 Virtual Terminal Switching

One capability Linux has had for a long time
is the ability to rapidly switch among multi-
ple sessions with “virtual terminals”. The X
server itself uses this to preserve a system con-
sole, running on a separate terminal ensures
that the system console can be viewed by sim-
ply switching to the appropriate virtual termi-
nal. Given this, multiple X servers can be
started on the same hardware, each one on a
different virtual terminal and rapidly switched
among.

The virtual terminal mechanism manages only
the primary graphics device and the system
keyboard. Management of other graphics and
input devices is purely by convention. The re-
sult is that multiple simultaneous X sessions
are not easily supported by the standard build
of the X server. The X server targeted at a non-
primary graphics device needs to avoid config-
uring the virtual terminal. However, this also
eliminates the ability for that device to support
multiple sessions; there cannot be virtual ter-
minal switching on a device which is not asso-
ciated with any virtual terminals.

With the HAL providing some indication of
which devices should be affiliated into a sin-
gle session configuration, the X server can at
least select them appropriately. Similarly, the
X server should be able to detect which device
is the console keyboard and manage virtual ter-
minals from there. Whether the kernel needs to
add support for virtual terminals on the other
graphics/keyboard devices is not something X
needs to answer.

The final problem is that of other input devices;
when switching virtual terminals, the X server
conventionally drops its connection to the other
input devices, presuming that whatever other
program is about to run will want to use the
same ones. While that does work, it leaves
open the possibility that an error in the X server
will leave these devices connected and deny
other applications access to them. Perhaps it
would be better if the kernel was involved in
the process and directing input among multi-
ple consumers automatically as VT affiliation
changed.

7 Conclusion

Adapting the X window system to work ef-
fectively and competently in the modern envi-
ronment will take some significant changes in



architecture, however throughout this process
existing applications will continue to operate
largely unaffected. If this were not true, the
fundamental motivation for the ongoing exis-
tence of the window system would be in doubt.

Migrating responsibility for device manage-
ment out of the X server and back where it
belongs inside the kernel will allow for im-
provements in system stability, power manage-
ment and correct operation in a dynamic envi-
ronment. Performance of the resulting system
should improve as the kernel can take better ad-
vantage of the hardware than is possible in user
mode.

Sharing graphics acceleration between 2D and
3D applications will reduce the effort needed
to support new graphics hardware. Migrating
the video mode selection will allow all graph-
ics systems to take advantage of it. This should
permit some interesting exploration in system
architecture.

Significant work remains in defining the pre-
cise architecture of the kernel video drivers;
these drivers need to support console opera-
tions, frame buffer device access and DRI (or
other) 3D acceleration. Common memory allo-
cation mechanism seem necessary, along with
figuring out a reasonable division of labor be-
tween kernel and user mode for video mode se-
lection.

Other work remains to resolve conflicts over
sharing devices among multiple sessions and
creating a mechanism for associating specific
input and output devices together.

The resulting system regains much of the fla-
vor of the original X11 server architecture.
The overall picture of a system which provides
hardware support at the right level in the archi-
tecture appears to have wide support among the
relevant projects making the future prospects
bright.

References

[Anh04] Eric Anholt. High Performance X
Servers in the Kdrive Architecture.
In FREENIX Track, 2004 Usenix An-
nual Technical Conference, Boston,
MA, July 2004. USENIX.

[GP01] Jim Gettys and Keith Packard. The
X Resize and Rotate Extension
- RandR. In FREENIX Track,
2001 Usenix Annual Technical Con-
ference, Boston, MA, June 2001.
USENIX.

[NR04] Peter Nilsson and David Reveman.
Glitz: Hardware Accelerated Image
Compositing using OpenGL. In
FREENIX Track, 2004 Usenix An-
nual Technical Conference, Boston,
MA, July 2004. USENIX.

[Pac01] Keith Packard. Design and Im-
plementation of the X Rendering
Extension. In FREENIX Track,
2001 Usenix Annual Technical Con-
ference, Boston, MA, June 2001.
USENIX.

[SAe99] Mark Segal, Kurt Akeley, and
Jon Leach (ed).The OpenGL Graph-
ics System: A Specification. SGI,
1999.

[SG92] Robert W. Scheifler and James Get-
tys. X Window System. Digital Press,
third edition, 1992.

[WP03] Carl Worth and Keith Packard. Xr:
Cross-device Rendering for Vector
Graphics. InProceedings of the Ot-
tawa Linux Symposium, Ottawa, ON,
July 2003. OLS.

[Zeu] David Zeuthen. HAL Specification
0.2. http://freedesktop.
org/~david/hal-0.2/spec/
hal-spec.html .


